Advanced Speech-Audio Processing in Mobile Phones and Hearing Aids

- Synergies and Distinctions -

Peter Vary

RWTH Aachen University Institute of Communication Systems

WASPAA, October 23, 2013 Mohonk Mountain House

RNTHAACHEN UNIVERSITY

Mobile Phone in Noisy Environment

□ <u>At both ends</u> of the communication link

- increased listening effort
- decreased intelligibility

due to 3.4 kHz frequency limitation and acoustic background noise

Hearing Aid in Noisy Environment

Hearing area of normal and impaired hearing

Source: H. Puder, Siemens]

Hearing Aid in Noisy Environment

Normal and impaired frequency resolution and masking

Limited dynamic range (raised hearing threshold) and stronger masking

- increased listening effort
- decreased intelligibility

Source: H. Puder, Siemens]

Advanced Speech-Audio Processing in Mobile Phones and Hearing Aids

- 1. Introduction
- 2. Acoustical Distinctions
- 3. Signal Processing & Coding
- 4. Selected Algorithms
- 5. Conclusions

2. Acoustical Distinctions

- Dual- and multi-microphones signal processing capabilities
- Hearing aids
 - monaural

- bilateral

2. Acoustical Distinctions

- Dual- and multi-microphones signal processing capabilities
- Hearing aids
 - monaural

- binaural

2. Acoustical Distinctions

- Dual- and multi-microphones signal processing capabilities
- Hearing aids
 - monaural / bilateral

2 x 2 Microphones

- binaural

Mobile phones - monaural OTOROLA 🗄 📶 🥥 2:55 PM lessaging Primary

microphone

Auxiliary

microphone

Coherence: Theory

ind

Coherence: Theory & Measurement (1)

Mobile phone in hands-free / loudspeaking mode

Peter Vary • Advanced Speech-Audio Processing • 11

Coherence: Theory & Measurement (2)

MSC for d_{mic} = 17 cm

Head-related (binaural) noise field coherence

Noise: Diffuse field coherence and small power differences
 Speech: Large power differences between the microphones

Power Level Differences (2)

Hearing aids (bilateral & binaural)

Two cases

- bilateral: 2 microphones with distance of 1cm at each ear
- binaural: 1 differential microphone at each ear

In both cases

small power level differences for frontal speech and diffuse noise

Advanced Speech-Audio Processing in Mobile Phones and Hearing Aids

- 1. Introduction
- 2. Acoustical Distinctions
- 3. Signal Processing & Coding
- 4. Selected Algorithms
- 5. Conclusions

Mobile Phone

Enhancement, coding & modulation

Mobile Phone

Enhancement

Hearing Aid

Enhancement

Hearing Aid

Enhancement and external digital wireless audio input

Hearing Area Network – Wireless Connectivity

[Based on PHONAK Hearing Systems]

Hearing Aid with Binaural Audio Processing

Enhancement, coding & modulation

Advanced Speech-Audio Processing in Mobile Phones and Hearing Aids

- 1. Introduction
- 2. Acoustical Distinctions
- 3. Signal Processing & Coding
- 4. Selected Algorithms
- 5. Conclusions

4. Selected Signal Processing Algorithms

- 1) Single Microphone Noise Reduction
- 2) Dual Microphone Noise Reduction
- 3) Speech-Audio Coding
- 4) Intelligibility / Listening Enhancement
- 5) Artificial Bandwidth Extension
- 6) Wind Noise Reduction
- 7) Spatial HD-Telephony

To which extent may algorithms be re-used in mobile phones and digital hearing aids?

4.1 Single Microphone Noise Reduction

 $k = \text{time}, \lambda = \text{frame}, \mu = \text{frequency}$

iN

Psychoacoustic Weighting Rule *H*_P

$$\lambda = \text{frame}, \mu = \text{frequency}$$

IN

[Stefan Gustafsson IEEE Tr. SAP, 2002]

Psychoacoustic Weighting Rule H_P

Audio Example:

Magnitude spectral subtraction	input:	s+n	
$H_S = \max\left(\frac{ X - \sigma_N}{ X }, 0\right)$	output:	$\hat{s} + \Delta n$	
	output noise	Δn	

Psychoacoustic weighting rule

4.2 Dual Microphone Noise Reduction

- Mobile phone in hands-free / loudspeaking mode
- □ With coherence functions Γ_s , Γ_n of speech s and noise n as a function of frequency

$$\Phi_{x1,x2} = \Gamma_s \cdot \Phi_{ss} + \Gamma_n \cdot \Phi_{nn}$$

Noise PSD estimate

$$\hat{\Phi}_{nn} = \frac{\sqrt{\Phi_{x1x1} \cdot \Phi_{x2x2}} - \frac{\Phi_{x1x2}}{\Gamma_s}}{1 - \frac{\Gamma_n}{\Gamma_s}}$$

□ Adaptive learning of Γ_s , Γ_n using Speech Presence Probability

(SPP, soft decision voice activity detection, T. Gerkmann, R.C. Hendriks, WASPAA 2011)

[Christoph Nelke, ICASSP 2013]

Audio Example: Dual Microphone Noise Reduction

 $k = \text{time}, \lambda = \text{frame}, \mu = \text{frequency}$

[Christoph Nelke, ICASSP 2013]

4.3 Speech-Audio Coding

Mobile phones:

- □ *Model based* monaural coding with 1–2 bits per sample
- Latency: 20 ms
- Audio bandwidth: 3.4 or 7.0 kHz
- Shaping of quantisation-noise shaping to exploit masking

Hearing aids:

- □ *Waveform coding* (mono or stereo) with more than 2 bits per sample
- Audio bandwidth more than 7 kHz
- External audio link
 - Latency: not critical
 - Noise shaping
- Internal binaural link
 - Latency: 5 ms
 - Noise shaping?

[Bastian Sauert, EUSIPCO 2010]

Differential Beamforming (DBF)

Differential Beamforming and Coding

Differential Beamforming and Coding

iN

Differential Beamforming with / without Coding

- Power Spectral Densities (PSDs):
 - front microphone signal
 - quantization noise of encoded microphone signal
 - beamformer error using encoded signals

4.4 Intelligibility / Listening Enhancement

- Near-end listener experience:
 - Higher listening effort
 - Reduced speech intelligibility

Approach:

- *Preprocess* clean far-end speech
- Enhance *intelligibility* in near-end noise
- *Re-distribute* signal frame energy over frequency
- Constraints:
 - Ear damage
 - Loudspeaker protection
 - Low delay

Optimization: Speech Intelligibility Index (SII)

Intelligibility maximization by dynamical spectral weighting in Bark bands

Constrained 17-dimensional non-linear optimization

Up to 22 percentage points increase of word recognition rate without increasing total audio power

[Bastian Sauert, EUSIPCO 2010]

Performance in Real Environment

Near-end listener at a motorway station

Peter Vary • Advanced Speech-Audio Processing • 36

IN

4.5 Artificial Bandwidth Extension (BWE)

- □ Today's narrowband telephony: 3.4 kHz
- Tomorrow's telephony with wideband speech coding: 7 kHz
- Long transition period

Bandwidth extension at the receiving end

BWE: Recognition & Estimation & Processing

IN

Audio Example: Telephone Speech without & with BWE

ind

4.6 Wind Noise Reduction

- U Wind noise = low frequency noise with $f < f_c$ (time varying)
- Substitution of disturbed frequency band using BWE

Wind Noise Reduction: Algorithm

Substitution of disturbed frequency band by bandwidth extension (BWE)

Peter Vary • Advanced Speech-Audio Processing • 41

iNd

Wind Noise Reduction: Audio Example

Peter Vary = Advanced Speech-Audio Processing = 42

IN

4.7 Spatial HD-Telephony & Audio Conferencing

Binaural headset or dummy head

4.7 Spatial HD Telephony & Audio Conferencing

Binaural headset or dummy head

ind

Binaural Group-Communication

Advanced Speech-Audio Processing in Mobile Phones and Hearing Aids

- 1. Introduction
- 2. Acoustical Distinctions
- 3. Signal Processing & Coding
- 4. Selected Algorithms
- 5. Conclusions

Re-Usability of Algorithms

3. Speech-Audio Coding

Wind Noise Reduction

1.

2.

5.

6

Re-Usability of Algorithms

Dereverberation

1.

2.

4.

5

6

7.

9

Conclusions

I

Advanced Speech-Audio Processing in Mobile Phones and Hearing Aids

Peter Vary RWTH Aachen University Institute of Communication Systems

Thanks for contributions:

Christiane Antweiler Bastian Sauert Christoph Nelke Bernd Geiser Magnus Schäfer Marco Jeub Matthias Dörbecker Stefan Gustafsson Peter Jax

RNTHAACHEN UNIVERSITY

 Nelke C. M., Beaugeant, C., and Vary P.:
 Dual Microphone Noise PSD Estimation for Mobile Phones in Hands-Free Position Exploiting the Coherence and Speech Presence Probability,

in: *Proceedings of ICASSP*, Vancouver, Canada, May 26–31, 2013.

 Nelke, C. M., Nawroth, N., Jeub, M., Beaugeant, C., and Vary, P.: Single Microphone Wind Noise Reduction Using Techniques of Artificial Bandwidth Extension, in: *Proceedings of EUSIPCO*, Bucharest, Romania, Aug. 27–31, 2012, p. 2328–2332.

Sauert, B. and Vary, P.:

Listening Enhancement for Mobile Phones – How to Improve the Intelligibility in a Noisy Environment, in: *The Listening Talker Workshop (LISTA)*, Edinburgh, United Kingdom, May 2–3, 2012, invited talk.

- Jeub, M., Herglotz, C., Nelke, C. M., Beaugeant, C., and Vary, P.: Noise Reduction for Dual-Microphone Mobile Phones Exploiting Power Level Differences, in: *Proceedings of ICASSP*, Kyoto, Japan, March 25–30, 2012.
- Sauert, B. and Vary, P.:
 Near End Listening Enhancement: Speech Intelligibility Improvement in Noisy Environments, in: *Proceedings of ICASSP*, Toulouse, France, May 14–19, 2006, p. 493–496.

 Jax, P. and Vary, P.: On Artificial Bandwidth Extension of Telephone Speech, in: Signal Processing, vol. 83, no. 8, Aug. 2003, p. 1707–1719.

 Gustafsson, S., Martin, R., Jax, P., and Vary, P.:
 A Psychoacoustic Approach to Combined Acoustic Echo Cancellation and Noise Reduction, in: *IEEE Transactions on Speech and Audio Processing*, vol. 10, no. 5, July 2002, p. 245–256.

