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Communication in Adverse Acoustic Conditions

Source: http://cdsweb.cern.ch, accessed on Oct 28, 2012
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Hearing Loss Prevalence Data

Hearing loss prevalence and hearing aid adoption rates,
based on stated hearing loss on the screening survey.

Source: http://www.hearingreview.com/issues/articles/2011-02-01.asp
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Hearing Loss and its Consequences I

healthy outer hair cells damaged outer hair cells

Source: http://dontlosethemusic.co.nz, accessed on Sept 16, 2013

◮ Increase of the threshold of hearing
• soft sounds are not heard anymore
• speech intelligibility (even without additional noise) is insufficient
• compensation via strong amplification (up to 70 dB) without

exceeding the loudness discomfort level (LDL)
• target amplification is derived from fitting rules.
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Hearing Loss and its Consequences II

◮ Reduction of spectral and/or temporal resolution in the inner ear
• speech sounds are loud enough but not intelligible
• speech communication in noisy environments is severely

degraded
• direct compensation of these effects is not possible

◮ Speech enhancement / noise reduction pre-processing is very
important for successful rehabilitation!
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Hearing Aids

Sources: Siemens Audiologische Technik, Oticon, varibel
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Open-Fit Hearing Aids
◮ Open-fit devices

• are best for mild to moderate hearing loss with good residual
hearing at low frequencies,

• are comfortable to wear,
• improve own voice reproduction,
• require powerful feedback cancellation.

Source: www.lloydhearingaid.com
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Open-Fit Signal Model

◮ Open-fit devices
• require very short processing latency,
• may be less effective in high levels of ambient noise
• a case for active noise control?

see [Dalga and Doclo 2013].
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Wireless Connectivity

wireless link

◮ Binaural link for the exchange of
settings and parameters

◮ Full audio bandwidth is desired

◮ Audio streaming via wireless
relay

◮ Streaming directly from a
smartphone to hearing aids

◮ Full bi-directional signal
transmission using sensors and
computational power of the
smartphone
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Challenges

Sources: Blackberry, Nokia,
Siemens, 2010

◮ Users expect effortless communication
in complex acoustic environments

• many spatially distributed sources
• non-stationary, non-Gaussian signals
• ambient noise and reverberation
• time-varying signal paths
• very long impulse responses

◮ This requires optimization of both
intelligibility and quality.

◮ Hardware restrictions
• very small size of device
• very low latency < 10 ms
• very low power < 1 mW
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Spectral Analysis and Synthesis

Requirements of noise reduction:
◮ High energy compaction of target signal

• High spectral resolution of harmonics for voiced speech
⇒ good separation of speech and noise

• High temporal resolution for transient sounds
⇒ accurate reproduction of transient speech sounds

◮ High stop-band attenuation
◮ Perfect reconstruction
◮ Low algorithmic delay
◮ High computational efficiency

Introduction Analysis/Synthesis Single Channel NR Multi-Channel Summary Rainer Martin 11 / 48



Spectral Analysis / Synthesis

◮ DFT and uniform filter banks, e.g. [Griffin and Lim 1984]

• high-resolution
• perfect reconstruction
• highly efficient

◮ Non-uniform filter banks, e.g. [Hohmann 2002]

• resolution according to perceptual model
• near-perfect reconstruction

◮ Low-delay filter-bank equalizer,
e.g. [Löllmann and Vary 2005], [Vary 2006], [Löllmann and Vary 2008]

◮ Eigenvalue / eigenvector decomposition,
e.g. [Ephraim and van Trees 1995]

• signal adaptive / optimal
• computationally expensive
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Overlap-Add Analysis and Synthesis

noise
reduction

ll
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To achieve perfect reconstruction the product of these window functions
must satisfy the constant-overlap-add constraint

∞∑

k=−∞

wA(n−R)wS(n−R) = 1

where R is the block shift of the windows.
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Overlap-Add with Symmetric Windows
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Low Latency Spectral Analysis / Synthesis
◮ Latency is identical to the length of the synthesis window
◮ Use non-symmetric analysis window and short window for synthesis
◮ Family of non-symmetric windows

• right-hand side of all analysis and all synthesis windows is
identical

• left-hand side is variable
• use different windows for different speech sounds
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DFT: [Mauler and Martin 2007, 2009, 2010], CQT: [Nagathil and Martin, 2012]
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Low Latency Spectral Analysis / Synthesis
with Adaptive Resolution
◮ High spectral resolution required:
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Adaptive Window Switching
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Single-channel Noise Reduction

noise
reduction
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In the DFT domain we have:

◮ Noisy speech: Yµ
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• frequency index µ
• time index l

◮ Estimated speech coefficient: Ŝµ
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Noise Reduction: Basic Tasks
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Principle of Single Channel Noise
Reduction
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Postprocessing in the Cepstrum Domain
for the Reduction of Musical Noise

Definition of the real-valued cepstrum:

cy(q) =
1

2π

∫ π

−π

ln
(
|Y (ejΩ)|

)
ejΩqdΩ

where Y (ejΩ) is the spectrum of time domain signal y(i).

Some (strange) terminology: cepstrum, quefrency, rahmonic, ...
[B.P. Bogert, M.J.R. Healy and J.W. Tukey, 1963]

The cepstrum is very well suited to group speech components:

◮ coarse spectral features (envelope),

◮ harmonic structure, and

◮ fine structure of spectrum.
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Cepstrum of a Voiced Speech Sound
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Temporal Cepstrum Smoothing

Principle [Breithaupt, Gerkmann, Martin, IEEE Signal Proc. Lett. 2007] :
◮ separation of coarse and fine spectral features
◮ relatively strong smoothing of spectral fine structure
◮ relatively little smoothing of coarse spectral structures.

Advantages with respect to other smoothing methods:
◮ reduction of variance of residual noise
◮ negligible impact on speech signal
◮ preservation of harmonic spectral structure of voiced speech.

Applications:
◮ single channel noise red. [Breithaupt, Gerkmann, Martin 2008]

◮ blind source separation [Madhu, Breithaupt and Martin 2008]

◮ automatic speech recognition [Breithaupt and Martin 2006, 2008]

◮ binaural dereverberation [Gerkmann 2011]
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NR Example: Speech in Babble Noise
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NR Example: Speech in Babble Noise
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Analysis of Spectral Outliers
Log-histogram of residual noise before and after noise reduction
for various estimators and white Gaussian noise:

before after
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◮ Heavy tails result in unnatural fluctuations!

◮ Smoothing in the cepstro-temporal domain results in a significant
reduction
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Evaluation: Preference Test
◮ Proposed algorithm with adaptive window switching, temporal

cepstrum smoothing, amplification of transient sounds
◮ Reference algorithm with standard components.
◮ Male and female speakers, 3 noise types, 3 SNRs (5, 10, 15 dB)
◮ 27 normally-hearing listeners

speech quality noise quality overall quality

[Mauler 2010]
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Performance of Single Channel NR

◮ Many studies, e.g. [Dahlquist et al., 2005] and [Luts et al. 2010], have
shown that generic single channel methods

• show SNR improvements in of 2-12 dB,
• improve subjective quality,
• reduce listener fatigue,
• but do not improve intelligibility

◮ Improvements of about 1-2 dB are reported for CI users.

◮ Improvements of intelligibility are reported for the ideal and
estimated binary masks [Hu and Wang, 2001, [Kim et al. 2008], [Healy
et al., 2013].

◮ Alternative approach: synthesis using corpus of clean signal
segments.
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Corpus-based Speech Enhancement

◮ Conventional noise reduction systems suffer from
• insufficient noise attenuation and/or
• target signal distortions

◮ Idea: Resynthesize speech from clean speech segments
[Xiao and Nickel, 2010]

signal
segmentation

cluster
selection

correlation
search

conventional noise reduction

stream
selection

concatenation
& smoothing

feature
extraction

s(k)y(k)

[Nickel et al., 2013], also with audio-visual front-end processing: [Kolossa et al., 2012]
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Example: Speech + Babble noise
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From Single- to Multi-channel Processing

◮ Performance of single-channel algorithms is limited because only
temporal and spectral information can be used.

◮ Multichannel systems allow to exploit spatial information such as
location of sources and spatial sound field statistics.

◮ Sensors can be distributed in space for improved signal pick-up.

◮ Many successful multichannel approaches:
• (Adaptive) differential microphones, e.g. [Elko and Pong, 1997]
• MVDR beamforming, e.g. [Cox et al. 1986]
• Generalized sidelobe canceler, e.g. [Griffiths and Lim, 1982] ,

[Gannot et al., 2001]
• Blind source separation, e.g. [Araki, Makino et al. 2003, ...],

[Buchner, Aichner, Kellermann 2003, ...]
• Speech distortion weighted multi-channel Wiener filter, e.g.

[Doclo et al. 2005], [van den Bogaert et al. 2009]
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Adaptive Beamformer
Basic Generalized Sidelobe Canceler (GSC) [Griffiths and Jim, 1982]:
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Parsimonious Excitation-based
Generalized Sidelobe Canceller (PEG)
Extraction of source signal q using PEG:
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[Madhu and Martin, 2011]
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Spectrograms of Speaker 1 and 2

speaker 1 speaker 2
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Mixed Signal with Ambient Noise

◮ Signal separation in two steps:
• Source localization via steered response power (SRP-PHAT)

[DiBiase et al. 2001]
• Target signal extraction using parsimonious excitation-based

GSC [Madhu and Martin 2011]
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Optimal Azimuth per TF-Bin
◮ Optimize SRP-PHAT cost function in each time-frequency (TF) bin:
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Azimuth Histogram for Single Frame

0 20 40 60 80 100 120 140 160 180
0

0.05

0.1

0.15

0.2

0.25
signal frame 12

azimuth / degrees

re
la

tiv
e 

fr
eq

ue
nc

y

◮ Estimation of source posterior distributions via the
expectation-maximization algorithm
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SegIWSIR and SegIWSINR vs. Input SNR
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Summary

◮ Modern hearing systems are highly complex signal
processing devices

◮ Signal enhancement is at the core of speech processing
tasks in hearing aids

• single- and multi-channel noise reduction
• microphone array processing and source separation

◮ The challenge continues ...
• enable effortless speech communication for normal-hearing

people and people with a hearing loss,
• find low complexity / low power / low latency implementations.

◮ New solutions and opportunities arise from
• including more a priori knowledge about speech and hearing
• the availability of sensor networks and
• inclusion of top-down cognitive processes.
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The Future of Hearing Aids?

Source: www.bioaid.org.uk, accessed on Sept 20, 2013
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